В этом блоге я постараюсь изложить всяческие математические интересности, встреченные в разных книгах и статьях. Буду писать про то, что меня интересует в данный момент (сейчас это функциональный анализ и всякий digital audio processing). Также я хочу сразу извиниться за возможные неточности в изложении, так я всё же не профессиональный математик. Ну, поехали)
Накануне мне понадобилось найти гладкую функцию, определенную на $\textbf{R}[a,c]$, равную единице на одном отрезке числовой оси, скажем, $[a, b-\epsilon]$ и нулю на другом, скажем $[b+\epsilon, c]$. Для того, чтобы гладко склеить эти два кусочка, я решил найти монотонно убывающий многочлен $f(x)$, равный $f(0) = 1$ и $f(1) = 0$, а потом "вставить" его в отрезок $[b-\epsilon, b+\epsilon]$. Для гладкости сшивки должны выполняться условия $f'(0) = f'(1) = 0$. Я решил пойти далее и положить $f^{(n)}(0) = f^{(n)}(1) = 0$ для всех $n = 1,2,\cdots,N$. То есть первые N производных должны быть равны нулю в т. $x = 0$ и $x = 1$. Понятно, что это легко сделать при наперед известном N, но как найти общую формулу? Я некоторое время промучился над этой задачей, пока не решил её следующим способом. Пусть искомая функция $f(x) = 1 + x^{N+1}L_{1}(x)$, где $L_{1}(x)$ — некий многочлен. Тогда у нас выполняется условие $f(0) = 1$ и $f^{(n)}(0) = 0$ (так как первая производная будет
Comments
Post a Comment