В этом блоге я постараюсь изложить всяческие математические интересности, встреченные в разных книгах и статьях. Буду писать про то, что меня интересует в данный момент (сейчас это функциональный анализ и всякий digital audio processing). Также я хочу сразу извиниться за возможные неточности в изложении, так я всё же не профессиональный математик. Ну, поехали)
В этом посте я разберу ещё одну характеристику представления аудио на компьютере — размер или глубину семпла. В теореме Шеннона, с которой мы ознакомились в первом посте, сказано, что семплы нужно брать с определенной частотой, чтобы восстановить исходный сигнал. Однако, в ней ничего не сказано о том, сколько памяти компьютера нужно выделить на один семпл. По сути ней семплы — это обычные вещественные числа. В компьютере же семплы чаще всего представляются целыми числами в диапазоне от $-2^{n-1}$ до $2^{n-1}-1$ (целые числа со знаком), где $n$ — количество бит на один семпл (bps, bits per sample). С количеством бит на семпл связана другая величина — динамический диапазон (или отношение сигнал-шум, что в данном случае то же самое). Он измеряется в децибелах определяется так: $DR = 20 \lg (2^{n}) \approx 6 n$ Динамический диапазон показывает логарифм отношения самого сильного сигнала к самому слабому. Теперь, что будет, если мы выберем $n$ маленьким? Если взять синусоидальную ...
Comments
Post a Comment